Fondezione IRCCS Regione Control Internet Regione Control Internet

Preliminary Program

4th Milan NET Conference

A meeting among active Italian Neuroendocrine Tumor Boards

Tuesday June 12^e, 2018 Aula / Hall Gianni Bonadonna Fondazione IRCCS Istituto Nazionale dei Tumori Milano

ഞ

New opportunities of molecular targeted therapies and combined role with immunotherapy

Nicola Fazio, M.D., Ph. D.

Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors European Institute of Oncology Milan, Italy

Molecular targeted therapy in NEN

Main areas

- mTOR pathway
- TKIs
- Specific settings

BYL-719: PI3Kα-inhibitor

Novel TKIs in GEP NETs

Compound		/EGF	R	PDO	GFR	FGFR	CSF1R	ΚΙΤ	FLT-3	RET	MET	
	1	2	3	α	β							
Sunitinib		~	~	~	~			~	~	~		Phase III
Pazopanib	~	V	~	~	~			~				
Cabozantinib	~	V	~						~	~	>	Phase III
Lenvatinib	~	V	~	V		~		~		~		
Axitinib	~	V	~		~			~				Phase III
Sulfatinib	~	~	~			~	V		~			Phase III
Nintedanib	~	~	~	~	~	~						

Targ Oncol DOI 10.1007/s11523-017-0506-5

REVIEW ARTICLE

Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors

Diana Martins¹ & Francesca Spada¹ & Ioana Lambrescu¹ & Manila Rubino¹ & Chiara Cella¹ & Bianca Gibelli² & Chiara Grana³ & Dario Ribero⁴ & Emilio Bertani⁴ & Davide Ravizza⁵ & Guido Bonomo⁶ & Luigi Funicelli⁷ & Eleonora Pisa⁸ & Dario Zerini⁹ & Nicola Fazio¹ & IEO ENETS Center of Excellence for GEP NETs

No validate predictive biomarker for sunitinib and everolimus so far

Martins et al., Targeted Oncol 2017

2006→2014: 4453 resected CRC (32 NECs)

BRAF mutations were identified in 59% of NECs and in only 5% of poorly differentiated conventional adenocarcinoma (15/17 V600E)

Olevian et al., Hum Pathol 2016

B-RAF mutation = 9% of 108 colorectal NEC cases (80% V600E)

A dramatic tumor response to **BRAF-MEK inhibitors** has been reported in two cases of high grade B-RAF mutated rectal NEC refractory to standard chemotherapy.

Klempner et al. Cancer Discov 2016

FDA Approves Dabrafenib/Trametinib Combination for *BRAF*-Positive Anaplastic Thyroid Cancer

By The ASCO Post

In NEN More prognostic than predictive biomarkers

NGS in panNET

80 pts, 96 tumor samples All pts metastatic and pre-treated

Somatic alterations in 95 % of cases

Most common alterated genes (*MSK-IMPACT 486 genes*):

- MEN-1 56 %
- DAXX 40 %
- ATRX 25 %
- TSC-2 25%

Raj N et al., JCO Precision Oncology 2018

ASCO 2018 Poster session: Puccini et al.

Comprehensive genomic profiling of 724 GEP-NETs

Methods: NGS (MiSeq on 47 genes, NextSeq on 592 genes), IHC and ISH

Low grade	ATRX (13%	b) Low grade	TML (1%)
	MEN1 (10%	(o)	MSI (0%)
			PD-L1 (1%)
High grade	TP53 (51%	(o)	
	KRAS (30%	6) High grade	TML (7%)
	RB1 (11%	(o)	MSI (4%)
		-	PD-L1 (6%)

In HG → higher TML, B-RAFm, KRASm, PIK3CAm

Immune checkpoint inhibitor therapy in NETs: Debated points

- What predictive factors ?
- What clinical setting ?
- What combinations ?

Immune checkpoint inhibitor therapy in NETs: Debated points

- What predictive factors ?
- What clinical setting ?
- What combinations ?

Tumor Mutational Burden and Response Rate to PD-1 Inhibition

We anticipate a low objective response rate (<5%) for several other cancers (e.g., pilocytic astrocytoma and small-intestine carcinoid).⁴ A limita-

Yao, ENETS 2017, Oral presentations

Immune checkpoint inhibitors predictive factor: Mutational burden or Immunogenicity ?

".....mutational burden increases the likelihood that a tumour is immunogenic, but that it may not be an absolute requirement for checkpoint blockade response."

Cogdill et al., Br J Cancer 2017

Tumor response **better** than predicted by the TMB \rightarrow Merkel Cell Carcinoma

Tumor response worse than predicted by the TMB \rightarrow MSI-H Colorectal carcinoma

Limitations :

- Low number
- Mixed population
- Method

Small bowel NET can be target for immune checkpoint inhibitor therapy other than panNET and NEC

PD-1, PD-L1, PD-L2, TILs: which is the right predictive biomarker?

62 Well differentiated small bowel NETs 63 PD-1, PD-L1, PD-L2 and TILs

- 30% of WD small bowel NET expressed PD-L1 within tumor cells and/or TILs.
- No PD-L2 IHC expression
- TILs were in a significat amount within WD small bowel NET
- RT-PCR confirmed the IHC results

Cytoplasmic tumoral expression of PD-L2 in pNET and SINET

Cytoplasmic expression of PD-L2 in pNET

Da Silva et al, NANETS 2016 Annual Symposium

Kulke M., Neuroendocrine Tumors: Immune environment and tumor heterogeneity ENETS 2017

Expression of Other Key Immune Genes

Young K, ESMO 2017

Immune genes enriched in MLP subtype

40% immune genes differentially expressed in MLP and Intermediate subtypes

All had a higher expression in MLP and a lower expression in Intermediate Subtype

3 2 1 0 -1 -2 -3

MLP subtype = immune high phenotype

Young K, ESMO 2017

Immune checkpoint inhibitor therapy in NETs: Debated points

- What predictive factors ?
- What clinical setting ?
- What combinations ?

MADRID STOC

Pembrolizumab for Patients With PD-L1–Positive Advanced Carcinoid or Pancreatic Neuroendocrine Tumors: Results From the KEYNOTE-028 Study

Janice M. Mehnert,¹ Emily Bergsland,² Bert H. O'Neil,³ Armando Santoro,⁴ Jan H. M. Schellens,⁵ Roger B. Cohen,⁶ Toshihiko Doi,⁷ Patrick A. Ott,⁸ Michael J. Pishvaian,⁹ Igor Puzanov,¹⁰ Kyaw L. Aung,¹¹ Chiun Hsu,¹² Christophe Le Tourneau,¹³ Jean-Charles Soria,¹⁴ Elena Élez,¹⁵ Kenji Tamura,¹⁶ Marlena Gould,¹⁷ Guoqing Zhao,¹⁷ Karen Stein,¹⁷ Sarina A. Piha-Paul¹⁸

Well differentiated PD-L1+ NETs

KEYNOTE-028 (NCT02054806): Phase 1b Multicohort Study of Pembrolizumab for PD-L1+ Advanced Solid Tumors

Mehnert J, ESMO 2017

Toxicity comparable with what already known

Preliminary studies suggest immune checkpoint inhibitor therapy has activity in SCLC

- Keynote 028 (Pembrolizumab), Ott et al., JCO 2017
- Checkmate 032 (Nivolumab, Ipilimumab), Antonia et al. Lancet
 Oncol 2016

ASCO Annual Meeting 2016 Abstract 4020 (166618): Genomic profiling to distinguish poorly differentiated neuroendocrine carcinomas arising in different sites. Bergsland et al.

Retrospective search of Foundation Medicine Genomic Data

set to include 368 GEP-NEC and 608 SCLC.

SCLC is different from extra-lung SCC

	SCLC	Pano	reas	Colo	Other GI*	
Group (N)	(593)	1 (123)	2(91)	1 (92)	2(51)	1(59)
Gene			с			
TP53	90%	18% SCO	15% SC	59% SP	67%SP	49% SP
RB1	67%	10% SC	11% SC	34% SP	47%P	29% S
APC	2%	3% C	2% C	47% SPO	45%SP	8% C
CDKN2A	3%	21% SC	22% SC	5% PO	2%P	25% SC
KRAS	4%	7% C	7% C	37% SPO	39%SP	3% C
MEN1	1%	33% SCO	29% SC	3% P	0%P	2% P
CDKN2B	1%	16% SC	18% S	1% PO	2%	19% SC
CCNE1	4%	2% O	2%	1% O	2%	17% SPC
DAXX	0%	20% SCO	14%S	0% P	0%	0% P
FBXW7	3%	1%C	0%C	14%SP	16% SP	5%

Hidalgo, Discussant ASCO 2016

ASCO 2018 Poster session: Vijayvergia et al.

Pembrolizumab monotherapy in patients with previously treated metastatic high grade neuroendocrine neoplasms

TOW OTLOT

nclusions

hough generally well tolerated,

ASCO 2018 Poster session: Hooker et al.

A pilot study of pembrolizumab-based therapy in previosly treated extrapulmonary poorly differentiated neuroendocrine carcinoma

N=16

*Physician's choice: Paclitaxel or weekly Irinotecan

Imaging Q9W x 6 months, then Q12W

ility:				
ISION CRITERIA	KEY EXCLUSION CRITERIA			
ly confirmed locally	Merkel cell carcinoma			
	Analysis plan:			
	 If >2 responses out of the 			

Analysis plan:

 If >2 responses out of 14 pts by week 18

 part A), then 21 additional patients (pt enroll in stage 2 (Part A), corresponding 10% vs. H1 26% at type I error of 0.05 power 80%.

PDR001 in GEP and Lung NET/NEC

Phase II multi-cohort international study

PDR001 binds to PD-1 so blocking both PD-L1 and PD-L2

A multicohort phase II study of **durvalumab plus tremelimumab** for the treatment of patients (PTS) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic (GEP) or lung origin (the DUNE trial-GETNE1601-).

Merkel Cell Carcinoma

ASCO 2018 Second-line Avelumab in MCC: an update Nghiem P

Progression-free survival with avelumab and retrospective chemotherapy data^{1-3,*}

* This figure is for illustrative purposes only and is not a direct head-to-head comparison; it incorporates multiple different data sets and is not from a randomized clinical trial 1. Cowey CL, et al. *Future Oncol*. 2017;13(19):1699-1710. 2. Becker J, et al. *Oncotarget*. 2017;8(45):79731-41. 3. Iyer JG, et al. *Cancer Med*. 2016;5(9):2294-301.

PRESENTED AT: 2018 ASCO ANNUAL MEETING

#ASCO18 Slides are the property of the author permission required for reuse.

PRESENTED BY: Paul Nghiem, MD, PhD

Progression-free survival with pembrolizumab for MCC

ASCO 2018 Nivolumab as neoadjuvant therapy in MCC *Topalian* S

CheckMate 358

Radiographic Tumor Reduction

- 40% of 25 CT-evaluable patients had target lesion reductions >30%.
- Radiographic response and tumor MCPyV status were investigator-assessed.

pCR = pathologic complete response; MPR = major pathologic response (≤10% residual viable tumor); NA = not assessed.

Immune checkpoint inhibitor therapy in NETs: Debated points

- What predictive factors ?
- What clinical setting ?
- What combinations ?

Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth

Acquired resistance to Temozolomide in CRC

 \rightarrow Increased tumor mutational burden

 \rightarrow Improved immunosurveillance

MSH-6: normal pre-TMZ, mutated post-TMZ

This is a "proof of concept that it is possible to inactivate DNA repair in vivo to improve immune surveillance and responses to immune-checkpoint blockade."

Germano G et al., Nature Dec 2017

Temozolomide in Advanced Neuroendocrine Neoplasms: Pharmacological and Clinical Aspects

Koumarianou A, Kaltsas G, Kulke MH, Oberg J, Strosberg J, Spada F, Galdy S, Barberis M, Fumagalli C, Berruti A, and Fazio N

Neuroendocrinology, June 2015

PARP-I + TMZ

Inhibition of PARP avoids recruitments of base excision repair (BER) components involved in the repair process of *N*-methylpurines; this results in generation of strand breaks and induction of apoptosis

Veliparib + Temozolomide for Treatment of Recurrent ES-SCLC

Double-blind, randomized, placebo-controlled phase II trial

- Primary endpoint: 4-mo PFS
- Secondary endpoints: ORR (RECIST v1.1), OS, safety/toxicity, biomarkers

CDK 4/6 inhibitors \rightarrow immune checkpoint inhibitors

CDK 4/6 inhibition in NET: preclinical studies with ribociclib and palbociclib

Prada et al, Neuroendocrinology 2016 Tang L. et al., Clin Cancer Res 2012

Ribociclib-based therapy in NET: a preclinical study

Ribociclib sensitivity was associated with high expression of cyclin-1 and Rb

Ribociclib/Everolimus or 5-FU combinations were superior to the single-agent therapies, by downregulating mTOR and MEK pathways

Prada et al, Neuroendocrinology 2016

A phase II trial of palbociclib in metastatic grade 1/2 pancreatic neuroendocrine tumors: the PALBONET study on behalf of the Spanish Taskforce Group of Neuroendocrine Tumors (GETNE)

Abstract 4290

<u>Enrique Grande</u>¹, Alexandre Teulé², Teresa Alonso-Gordoa¹, Paula Jiménez-Fonseca³, Marta Benavent⁴, Jaume Capdevila⁵, Ana Custodio⁶, Ruth Vera⁷, Javier Munárriz⁸, Adelaida La Casta-Muñoa⁹, Rocío García-Carbonero¹⁰

Patients treated		21		
	N	%		
Partial response (PR)	0	0		
Stable disease (SD)	11	55		
Progression disease (PD)	9	45		

mPFS: 2.6 months (95% CI 0-14.4)

A Phase II Study of LEE011 (Ribociclib) in Patients with Advanced Neuroendocrine Tumors of Foregut Origin (CLEE011 XUS02T) US only CDK4/6 inhibition triggers anti-tumour immunity

CDK4/6 inhibitors not only induce tumour cell cycle arrest, but also promote anti-tumour immunity

→ Stimulation of type III IFNs → enhancement of tumor antigen presentation
 → Suppression of T-Reg

Goel S et al, Nature 2017

Chen Y-L et al., Cancer Letters 2017

Small cell lung cancer - ES : Phase I-II clinical trial NCT03325816 Maintenance setting after first-line chemotherapy

European Institute of Oncology, IEO, Milan, Italy ENETS Center of Excellence for GEP NETs IEO NET MDT

Istituto Europeo di Oncologia

