Imperial College London

Surgery of GEP-NETs in oligometastatic disease

5th Milan NET Conference A live and web multimodal meeting among active Italian NET Centres 12 June 2019

Milan

Professor Andrea Frilling Department of Surgery and Cancer Imperial College London ENETS Centre of Excellence

Imperial College London **State of oligometastases**– Definition -

- The extent of disease exists in a transitional stage between localized and widespread systemic disease
- Metastases to a single or a limited number of organs Clinically evident on radiographic sites Either 1-3 or 1-5
- No rapidly spreading to more sites
- Some patients so affected should be amenable to a therapeutic surgery Primary tumour and the metastatic sites
- Local control of oligometastases would have the potential to yield improved systemic control, prolonged disease-free interval, and perhaps even cure

Hellman S and RR Weichselbaum. J Clin Oncol 1995,13 (1); 8-10 Weichselbaum RR and S Hellman. Nature Reviews Clin Oncol 2011, 8:378-382 Reyes DK and KJ Pienta. Oncotarget 2015,6 (11);8491-8524

Imperial College London Incidence of GEP NET LM in relation to the primary tumour site

Frilling A et al. Lancet Oncology 2014;15:8

Imperial College London Small bowel neuroendocrine tumors

n=84 patients 2009-2014

Parameter	N (%)
Total number of patients	84
Mean age (range)	59.6 years (32 to 88)
Gender Male Female	46 (54.8) 38 (45.2)
Tumor functionality Functioning Non-functioning	27 (32.1) 57 (67.9)
Tumor grade G1 (Ki67 ≤2%) G2 (Ki67 3-20%) G3 (Ki67 >20%)	65 (83.3) 11 (14.1) 2 (2.6)

Miller H et al. World J Surg 2014;38:1356-1366 Clift AK et al. J Surg Gastroenterol 2015;20:180-188

Imperial College London Small bowel neuroendocrine tumours - Tumour stage and sites of metastases -

		Locations of distant	N (%)
Tumour Stage	N (%)	metastases	
$T_{1-4}N_0M_0$	9 (10.7)	Liver	45 (53.6)
T ₁₋₄ N ₁ M ₀	24 (28.6)	Bone	1 (1.2)
$T_{1-4}N_0M_1$	1 (1.2)	Peritoneum	2 (2.4)
T ₁₋₄ N ₁ M ₁	50 (59.5)	Liver and bone	2 (2.4)
		Liver and peritoneum	1 (1.2)

Oligometastatic disease versus systemic disease

Reyes DK and KJ Pienta. Oncotarget 2015,6(11);8491-8524

Imperial College London Systemic disease versus oligometastatic disease

Imperial College London Systemic disease versus oligometastatic disease

Management of neuroendocrine liver metastases

Fairweather M et al. Ann Surg Oncol 2017;24:2319

Imperial College London Prognostic factors for OS and PFS after hepatic resection for NELM Number of metastases

Author	Year	Overall survival Number of metastases	Progression –free survival Number of metastases		
Yao	2001	≤ 4	≤4		
Elias	2003	<10 vs >10	<10 vs >10		
Hibi	2007	Multiple vs solitary			
Durante	2009	<10 vs >10			
Norlen	2012	<5 5-10 >10	<5 5-10 >10		
Ruzzenente	2017	1-2 3-9 ≥10	1-2 3-9 ≥10		

Yao KA et al. Surgery 2001,130:677-682 Elias D et al. Surgery 2003, 133:375-382 Hibi T et al. Jpn J Clin Oncol 2007,37:102-107 Norlen O et al. World J Surg 2012,36:1419-1431 Ruzzenente A et a. J Gastrointest Surg 2017,21:41-48 Durante C et al. Endocr Relat Cancer 2009,16:585-599

Imperial College London

Neuroendocrine liver metastasis – morphologic growth types

Type I: Single metastasis

Type II: isolated metastatic bulk accompanied with smaller deposits

Type III: disseminated metastatic spread

Only 20-30% of the patients with NE LM are potential candidates for R0/R1 (or R2) surgery

Frilling A et al. Br J Surg 2009;96:175-184

Outcomes from liver resection for NE LM

Reference	No. of Patients Undergoing Resection	No. of R0 Resections	5-Year OS, %	5-Year DFS, %	Other Survival Data After R0 Resection	30-Day Morbidity and Mo	ortality
Saxena 2011 ³⁰	74	28	NR	NR	Median OS. 73 mo	Mortality, 1.3% (4% at 6)	0 d)
Scigliano 200931	41	26	88	31	· · · · · · · · · · · · · · · · · · ·	Morbidity, 14%; mortality,	0%
Frilling 2009 ²¹	27	23	100	96		Morbidity, 7.4%; mortality,	,0%
Gomez 2007 ³²	18	15	86	90		Morbidity, 22%; mortality,	5.6%
Elias 2003 ³³	47	25	74	66		Morbidity, 45%; mortality,	5%
Sarmiento 2003 ³⁴	170	75		76		Morbidity, 14%; mortality,	1.2%
Norton 2003 ³⁵	16	16	82			Morbidity, 19%; mortality.	0%
Nave 2001 ³⁶	31	10	86			Morbidity, 13%	
Coppa 2001 ³⁷	20	20	67	29		NR	
Yao 2001 ³⁸	16	16	70			Morbidity, 12%; mortality,	0%
Chamberlain 2000 ³⁹	34	15	85			Mortality, 6%	
Pascher 2000 ⁴⁰	26	13	NR	NR	Median survival, 70 mo	Mortality, 0%	

Abbreviations: DFS, disease-free survival; NR, not reported; OS, overall survival; R0, resection with negative margins.

5-year survival: 67 – 100% 5-year disease-free survival: 29 – 96% (type I-III) 30-day mortality: 0 – 6%

Frilling A and Cliff AK Cancer 2015;15:1172-1186

Imperial College London Nomogram to predict prognosis of patients undergoing Iver resection for NE LM 7 Italian HPB Centres 1990-2014 238 patients

Ruzzenente A et al. J Gastrointest Surg 2017:21;41-48

Imperial College London Nomogram to predict prognosis of patients undergoing liver resection for NE LM 7 Italian HPB Centres 1990-2014 238 patients

Overall survival stratified by the classification (3 prognostic factors)

Ruzzenente A et al. J Gastrointest Surg 2017:21;41-48

Imperial College Surgical management of NE LM London International multi-institutional analysis -**339 patients**

5%-year disease recurrence 94%

Mayo SC et al. Ann Surg Oncol 2010;17:3129-3136

Imperial College

London

Hepatic Metastases From Neuroendocrine Tumors With a "Thin Slice" Pathological Examination

They are Many More Than You Think . . .

TABLE 1. Histological, Preoperative Examinations, and Peroperative Exploration Results of 11 Hepatectomies for Neuroendocrine Tumor

					No. LM Preoperatively Identified on Imaging							
			Pathologic Findings		Ultrasound Examination				Somatostatin			
Patient	Primary Tumor	Type of Hepatectomy	Size c No. LM (min-m	Size cm (min-max)	Normal	Contrast Enhanced	CT-Scan	MRI	Receptor Scintigraphy	Intraoperative Findings		
1	Not identified	Right	13	(0.6–7)	8	8	6	7	0	9		
2	Stomach	Left	5	(0.25 - 1.2)	4	4	4	3	2	5		
3	Insulinoma	Right	22	(0.1 - 2.5)	7	8	5	10	3	10		
4	Glucagonoma	Left	59	(0.1 - 3.5)	4	7	6	13	3	18		
5	Insulinoma	Left	9	(0.7 - 5.5)	4	NA	5	9	0	6		
6	Small bowel	Right	16	(0.5 - 3.5)	7	7	4	7	3	4		
7	Small bowel	Right	13	(0.5-5)	6	NA	7	7	10	10		
8	Small bowel	Left	12	(0.1 - 1.4)	2	3	3	2	0	3		
9	Lung carcinoma	Right	8	(0.2-5)	3	NA	4	5	3	5		
10	Zollinger-Ellison	Left	88	(0.1 - 5)	0	8	2	6	3	8		
11	Glucagonoma	Right	28	(0.2-5)	15	NA	12	20	7	17		
Total	-	_	273		60	45	58	89	34	95		
Mean		(24.8 ± 25.7		5.4 ± 3.9	6.4 ± 2.1	5.3 ± 2.7	8.1 ± 5.0	3.1 ± 3.0	8.6 ± 5.0		
Median			13		4	7	5	7	3	8		
NA ir	idicates non applicable											

Elias D et al. Ann Surg 2010;251:307

Imperial Collegeng-term benefit of liver transplantation for hepatic metastases London from neuroendocrine tumours

5 and 10 years OS survival 97.2% and 88.8% vs 50.9% and 22.4% 5 and 10 years DF survival 89% and 83.5% vs. 13.1% and 13.1%

Mazzaferro V et al. Am J Transplant 2016;16:2892

Imperial College London Are there oligometastatic lymph node metastases?

Imperial College London

Long term results of surgery for small intestinal NET

Norlen O et al World J Surg 2012;36:1419-1431

Imperial College London

Multimodal treatment of an advanced small bowel NET

Frilling A et al. Transplant Proc 2015;47:858-862

Imperial College London **miRNA expression characterizes oligometastasis(es)**

Patients who failed to develop polymetastases are characterized by unique prioritized features of miRNA classifier that includes the **miRNA-200 family**

Lussier YA et al. PLoS ONE, 2011:6(12);e 28650

Conclusions

- Oligometastatic disease in NET is not well-defined and the condition not broadly acknowledged in the clinical practice.
- Well-selected patients with G1/G2 NET in oligometastatic stage are candidates for surgery (primary tumour and metastases).
- Precise assessment and confirmation of a diagnosis of oligometastatic stage is pivotal for treatment decision.
- Resection / ablation of oligometastatic disease has an impact on overall survival.
- Adjuvant treatment with an aim to prolong disease-free survival.
- Contemporary molecular markers have the potential to discriminate oligometastatic from polymetastatic disease.